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Abstract

Recent research literature mostly deals with nonlinear resonant dynamics of low-extensible cables involving transversal

modes. Herein, we aim to investigate geometrically nonlinear longitudinal/transversal modal interactions in highly

extensible suspended cables, whose material properties are assumed to be linearly elastic. Depending on cable elasto-

geometric properties, the spectrum of low-order planar frequencies manifests primary and secondary frequency crossover

phenomena of transversal/transversal and longitudinal/transversal modes, respectively. By focusing on 1:1 internal

resonances, nonlinear equations of finite-amplitude, harmonically forced and damped, cable motion are considered, fully

accounting for overall inertia and displacement coupling effects. Meaningful quadratic nonlinear contributions of non-

resonant, higher-order, longitudinal modes are highlighted via a multimode-based, second-order multiple scales solution.

Overall coupled/uncoupled dynamic responses, bifurcations, stability and space–time-varying displacements due to

longitudinal/transversal (vs. transversal/transversal) modal interactions at secondary (vs. primary) crossovers are

analytically and numerically evaluated, along with the resonant longitudinal mode-induced dynamic forces.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Suspended cables are basic structural components widely used in civil, mechanical, electrical and offshore
ocean engineering. Cables with high extensibility or elongation, reaching large initial strain without
undergoing failure in tension, are often found, for instance, in automotive industry including antennae,
cable–crane systems and connections to control panels, or in oceanographic applications such as tethered
buoys and moorings. Depending on the material and mechanical properties, highly extensible cables
offer great flexibility and advantages over low-extensible cables in some technical applications that require
long-span structural elements having the capability to withstand excessive dynamic stresses.

Low-extensible, e.g. metallic, suspended cables are characterized by high values of Young’s modulus giving
rise to small initial static strain. The transversal displacements substantially dominate their low-order
modes, whereas the corresponding first longitudinal mode (also known as elastic mode)—characterized by a
prevailing longitudinal displacement—usually occurs at a relatively higher-order frequency [1–3] along the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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so-called ‘‘elastic mode transition’’ line, which has been discussed originally in Ref. [1] and more recently in
Ref. [3]. In the case of highly extensible, e.g. synthetic, cables, the first longitudinal mode and its modal
transition occur, on the contrary, at a much lower-order (e.g., 3rd or 4th) frequency [4]. Triantafyllou and
Yue [5] analyzed the effect of hysteretic damping and large sensitivity to parametric changes in linear vibration
of synthetic cables.

Many theoretical studies have investigated nonlinear vibrations of low-extensible suspended cables
involving different kinds of internal resonances of transversal modes [6]. For such systems, the influence of
longitudinal inertia and the associated higher-order coupling of longitudinal/transversal displacements are
often neglected through the kinematic condensation procedure, which assumes cable quasi-static stretching
entailing spatially independent dynamic strain [7]. Accordingly, this simplified model may lead to significant
quantitative and/or qualitative discrepancies in the nonlinear internally resonant responses and stress
estimations of even shallow cables [8]. As a matter of fact, using the condensed model in the analysis of
longitudinal modes (or transversal modes with significant longitudinal components) for highly extensible
(or low-extensible non-shallow) cables would be meaningless. Based on a numerical finite difference scheme
accounting for longitudinal inertia, Newberry and Perkins [9] investigated the resonant tensioning mechanism
in low-extensible submerged cables due to a 3:1 internal resonance of high-order longitudinal/transversal
(85th/28th) modes, and observed strong energy transfer between these coupled modes. The nonlinear forced
responses of highly extensible underwater cables subject to current fluid forces were studied in Ref. [10]
implementing a nonlinear stress–strain relationship.

The objective of this analytical–numerical study is to complement previous investigations of nonlinear
modal interactions of low-extensible cables [8,11] by qualitatively comparing typical transverse/transverse

interactions at 1:1 internal resonances with the companion longitudinal/transversal interactions mostly
occurring in highly extensible cables. In view of such a comparison, the same non-condensed model
and linearly elastic material properties as of low-extensible cables are considered, although the latter
assumption might be questionable from a modeling standpoint. Within this framework, (i) the geometrically
quadratic nonlinear effect of higher-order longitudinal modes on a second-order multiple scales solution is
highlighted and (ii) insight into dynamic interaction features involving low-order longitudinal/transversal
resonant modes is gained. The first issue addresses a meaningful aspect from a practical reduced-order
modeling viewpoint with respect to low-extensible cables [8], whereas the second issue is discussed against
the case involving interaction of only transverse modes. Both numerical continuation and direct time
integration of system modulation equations are performed, verifying the obtained responses and illustrating
the existence of periodic and aperiodic oscillations involving longitudinal modes. For the sake of
completeness, the corresponding space- time-varying nonlinear dynamic displacements and tensions are also
examined.
2. Equations of motion and elastic mode transition

With reference to the Cartesian coordinates in Fig. 1a, nonlinear finite-amplitude planar vibration about the
static equilibrium of a highly extensible, small-sagged, suspended cable subject to a uniformly distributed
transversal harmonic excitation is governed by an infinite series of ordinary-differential equations expressed in
non-dimensional state-space form as [8]

_f m � pm ¼ 0,

_pm þ 2mmpm þ o2
mf m ¼

X1
i¼1

X1
j¼1

Lmijf if j þ
X1
i¼1

X1
j¼1

X1
k¼1

Gmijkf if jf k þ F

Z 1

0

jm dx

� �
cos Ot ð1Þ

for m ¼ 1, 2,y, N, wherein the quadratic and cubic nonlinear coefficients read
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Fig. 1. (a) The planar model of a highly extensible suspended cable. (b) Natural frequency spectrum and associated primary/secondary

crossover phenomena: solid (dotted) lines denote sine series-based (finite element) results of approximate (exact) model.
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fm (pm) are time-dependent generalized displacement (velocity) modal coordinates, related to the
longitudinal (or horizontal) u and transversal v motion of original system through UJ ¼

P1
m¼1f mz

J
m,

VJ ¼
P1

m¼1pmz
J
m, J ¼ 1, 2, with U1

¼ u, U2
¼ v, V1 ¼ _u, V 2 ¼ _v, z1m ¼ fm; z

2
m ¼ jm being the relevant linear

u and v orthonormalized eigenfunctions, and om being natural frequencies. The parameters are mm damping,
F(O) the variable amplitude (frequency) of excitation, a ¼ ECAC/H with EC being the cable Young’s modulus,
AC the uniform cross-sectional area and H the constant horizontal static tension. The static configuration
under its own weight is assumed as an inextensible parabola yE4dx(1�x) [7], with d being the cable
sag-to-span ratio. In Eq. (1), x(t) is the space (time) independent variable and the prime (dot) denotes the
associated derivative. The space-related variables have been non-dimensionalized with respect to the cable
span XH, whereas the time-related variables have been non-dimensionalized with respect to the characteristic
time X H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wC=gH

p
, with g being the gravity and wC the cable self-weight per unit unstretched length. Zero

displacements at hinged–hinged boundaries are considered.
It is worth remarking that Eq. (1) explicitly accounts for overall inertia and u/v displacement coupling

effects, and captures geometrically quadratic (2) and cubic (3) nonlinearities due to cable sag and axial
extensibility. As in low-extensible cable cases, the initial static strain (e) has been assumed such that (1+e)E1,
an assumption to be further verified. However, the arbitrary spatial/temporal variation of dynamic strain is
accounted for in Eq. (1) [8,12]. Associated natural frequencies and modal shape functions are obtained based
on admissible sine series of linear u/v displacements and the Galerkin approach [12]. The overall cable

dynamics depends on the well-known elasto-geometric parameter l=p ¼ ð1=pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwCSCÞ

2ECAC

�
H3

q
[1,7],
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in which SC is the cable equilibrium length. To suitably discuss the geometrical nonlinear effect of possibly
low-order longitudinal modes on dynamic response (Section 4), we consider a suspended cable having
linearly elastic material properties, however with a low axial rigidity ECAC chosen, along with the other
parameters, in such a way to produce a range of very low l/p values. Of course, these are representative
of an extremely soft material. By varying H, and thus SC, the spectrum of the first 12 frequencies o*/p,
normalized with respect to the characteristic time SC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wC=gH

p
[1], is plotted vs. l/p in Fig. 1b, which refers to

different sagged and strained cables. Solid lines denote results with 40 sine series, whereas dotted lines are
corresponding finite element (FE) results—utilized to validate the approximate cable model—of the more
realistic linearized model [12] accounting for 50 beam elements, extensible catenary static profile and space-
varying (1+e) effect.

Quantitative discrepancies are seen to occur mostly in some higher-frequency results both at low
(e.g., regions A0–D0) and higher (e.g., region D) l/p values. Such differences between the two cable model
predictions are particularly concerned with the static equilibrium solution, whose different assumptions on the
initial static strain are likely to affect the frequency values, as well as the possible shift of l/p (e.g., region D)
due to different ensuing values of (inextensible vs. extensible) equilibrium length SC. Of course, the
discrepancies also depend on the differences in the Galerkin-based spatial discretization procedure, i.e. the
number of terms in sine-based series vs. the number of FEs, of the two considered solution techniques.
Nevertheless, overall qualitative agreement occurs between the results of the two models, both exhibiting a
‘‘primary’’ frequency crossover E as in the low-extensible (higher EC) cable case [7]. Moreover, both models
reveal a sequence of ‘‘secondary’’ frequency crossover phenomena A, C, etc.—spaced out with frequency
avoidance phenomena B, D, etc.—as it typically happens at higher-order modes of low-extensible cables [1,3].
This sequence highlights the coexistence of a ‘‘first elastic mode transition’’ occurring at low-order modes [4]
and provides information on possible relevant 1:1 (and other) internal resonances. A second elastic mode
transition and so on consecutively occurs at higher-order frequencies, e.g., the A0–D0 sequence.

By way of examples, internally 1:1 resonant cables at crossovers A, C and E are considered, whose relevant
parameters, frequencies of low-order (or) and high-order (os) modes are given in Table 1. The associated (r, s)
shape functions are displayed in Fig. 2. It is found that—due to the first elastic mode transition at low (A)
or higher (C) order frequencies—one (r) of the coalescing frequencies of both cables A (solid lines) and C
(dashed lines) corresponds to the first longitudinal mode with predominant symmetric u and smaller
anti-symmetric v amplitudes, whereas the coexisting higher s frequencies correspond to symmetric transversal
modes having different predominant symmetric v (very small anti-symmetric u) amplitudes. On the other
hand, both the low/high coalescing frequencies of cable E (dotted lines) correspond to transversal modes being
anti-symmetric and symmetric, respectively.

As regards Fig. 1b, the maximum percent value of the space-varying initial static strain e from FE analysis is
about 12.6% for cable A and 4% for cable E, the latter corresponding to the string/inextensible cable
transition [4,7]. This means that the (1+e) term plays a greater role in cable A than in cable E. Yet, by
comparing the first 12 frequencies (Fig. 1b) associated with the two models for cable A, it is found that the
maximum percent difference of frequencies with respect to the FE-based model is about 5.84%, thus being
acceptable. Accordingly, the assumption (1+e)E1 made in the sine-based eigenvalue problem may be
plausible for the considered sag and extensibility (l/p) range in which cables A (dE0.038) and E (dE0.134)
exhibit largest (smallest) and smallest (largest) e (sag), respectively.
Table 1

Given parameters and properties of different primary/secondary crossover cables

Cable l/p d r–s or os

Order Modea

A 0.27 0.038 3–4 u–v 9.403 9.408

C 1.17 0.099 5–6 u–v 15.616 15.648

E 1.88 0.134 1–2 v–v 5.866 5.869

au(v) denotes dominant longitudinal (transverse) mode.
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Fig. 2. u and v displacements of low- and high-frequency (r, s) modes: solid (dashed, dotted) lines denote cable A (C and E) in Table 1.
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As a further remark, similar elastic mode transitions may take place for highly extensible inclined cables,
with both the primary and secondary crossovers (involving symmetric/anti-symmetric modes) in Fig. 1b being
replaced with frequency avoidances or veering (involving hybrid or asymmetric modes) because of the
asymmetry of inclined configurations [1,13]. Here, based on the Cartesian reference frame, we only deal with
horizontal cables as their longitudinal (i.e., horizontal) and transversal (i.e., vertical) mode shapes are clearly
distinguished from each other. Yet, in addressing some modal interaction features of highly extensible inclined
cables, it might be preferable to use the arc-length or space-varying local coordinates [1,9] in discriminating
actual longitudinal (i.e., tangential to the cable axis) modes from transversal (i.e., normal to the cable axis)
modes since the Cartesian coordinates generally entail commensurate horizontal/vertical displacements
depending upon the cable inclination [14].
3. Modulation equations and longitudinal modal contributions

Even if no external force is supplied in the u direction, energy from the directly excited transversal mode is
transferred to the longitudinal mode through a 1:1 internal resonance. Primary resonance of a high-frequency
transversal s mode (Fig. 2) is considered. Based on a full-eigenbasis Galerkin discretization and a second-order
multiple scales solution of Eq. (1), real-valued modulation equations, describing the nonlinear interaction of
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amplitudes (ar, as) and phases (br, bs) of the two 1:1 resonant (r, s) modes, are obtained, in polar form, as [8]

_ar ¼ �mrar þ
Ka2s ar sin 2D

8or

, (4)

ar _gr ¼ ðsf þ sÞar þ
Krra

3
r

8or

þ
Krsara

2
s

8or

þ
Ka2s ar cos 2D

8or

, (5)

_as ¼ �msas �
Ka2r as sin 2D

8os

þ
1

2os

F

Z 1

0

js dx sin gs, (6)

as _gs ¼ sf as þ
Kssa

3
s

8os

þ
Krsasa

2
r

8os

þ
Ka2r as cos 2D

8os

þ
1

2os

F

Z 1

0

js dx cos gs, (7)

where gr ¼ (sf+s)t�br, gs ¼ sft�bs, D ¼ gr�gs are relative phases, sf and s are external and internal detuning
parameters described through O ¼ os+e2sf, os ¼ or+e2s, respectively, with e being a bookkeeping
parameter. Let sf or F be the system varying control parameter, Eqs. (4)–(7) reveal both uncoupled-mode
(ar ¼ 0, as 6¼0) and coupled-mode (ar 6¼0, as 6¼0) solutions. The effective second-order coefficients, accounting
for an infinite-dimensional series of resonant (quadratic/cubic) and non-resonant (quadratic) modes
(nonlinearities), read [8]

Khh ¼
X1
m¼1

ðLhhm þ LhmhÞLmhh

2

o2
m

þ
1

o2
m � 4o2

h

� �� 
þ 3Ghhhh; h ¼ r; s, (8)

Krs ¼
X1
m¼1

ðLrrm þ LrmrÞ
2Lmss

o2
m

þ ðLrsm þ LrmsÞðLmrs þ LmsrÞ
1

o2
m � ðos þ orÞ

2
þ

1

o2
m � ðos � orÞ

2

 !" #

þ 2ðGrssr þ Grsrs þ GrrssÞ, ð9Þ

K ¼
X1
m¼1

ðLssm þ LsmsÞ
Lmrr

o2
m � 4o2

r

þ
ðLsrm þ LsmrÞðLmrs þ LmsrÞ

o2
m � ðos � orÞ

2

" #
þ Gsrrs þ Gsrsr þ Gssrr. (10)

Based on Eqs. (2) and (3), these coefficients depend, in general, on contributions of the cable elasto-
geometric parameter, sag, spatial modal characteristics (e.g., Fig. 2) and system frequency relationship. Thus,
based on a finite number of retained modes, overall coefficients affect nonlinear response through Eqs. (4)–(7).
Apart from the effective cubic coefficients which depend on solely resonant (r,s) modes, the percentage (Cm) of
each m modal contribution (Kqm) to the effective quadratic coefficients ðKq

rr;K
q
ss;K

q
rs;K

qÞ in Eqs. (8)–(10) is

evaluated [8,11] through Cm ¼ Kqm
.
j
PM

m¼1K
qmj

� 	
� 100, in which M is the number of retained modes. The

absolute of the denominator implies that one also accounts for whether each modal contribution produces a
softening or hardening effect, and entails the overall sum

P
Cm to be either 100 or �100%. A second-order

closed-form solution of 1:1 resonant u/v dynamic configurations—depending on coupled amplitudes, relative
phases and spatial profile corrections due to quadratic nonlinearities of every retained mode—is given in
Refs. [8,14].

With reference to Table 1 and Figs. 1 and 2, the percentage Cm values of quadratic contribution from each
resonant (underlined) and non-resonant mode to coefficients (9)–(11) are compared between cables A and E in
Table 2, with M ¼ 25 and 40, respectively. With the analysis of low-extensible cables at primary crossovers in
the background [8], here we discuss and distinguish between the longitudinal/transversal and transversal/
transversal modal interactions of highly extensible cables at secondary (A) and primary (E) crossovers,
respectively. It is found that since both cables A and E, as well as C, involve r/s interactions between
symmetric/anti-symmetric u (anti-symmetric/symmetric v) displacements (see Fig. 2), the nonlinear
orthogonality properties (do not) affect the coefficients with (mixed) symmetric or anti-symmetric modal-
based eigenfunctions [8] of both highly extensible cables. This entails that, particularly at low-frequency order,
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Table 2

A comparison of modal contributions to second-order quadratic coefficients of cables A and E

m Kq
rr Kq

ss Kq
rs Kq

A E A E A E A E

1 2.311 0 5.286 0 7.057 28.108 �0.063 93.631

2 0 39.582 0 88.896 71.798 47.220 47.695 �17.507

3 0 0.052 0 1.324 0.923 �1.691 0.806 3.375

4 0.412 0 0.793 0 1.363 4.516 �0.133 0.889

5 0 1.535 0 0.645 16.074 �0.307 48.054 �0.783

6 �0.101 0 �0.020 0 0.622 6.615 �0.416 5.444

7 �102.729 0 �0.092 0 �0.173 6.079 3.821 5.231

^ ^ ^ ^ ^ ^ ^ ^ ^
11 0 0 0 0 0.756 0 0.156 0

12 0.015 0.063 0.003 0 �0.007 �0.006 �0.004 �0.007

13 0 0.500 0 0.054 0 0.070 0 0.087

^ ^ ^ ^ ^ ^ ^ ^ ^
19 0 0 0 0 2.156 14.638 0.573 15.854

^ ^ ^ ^ ^ ^ ^ ^ ^
23 0.012 0 93.927 0 �1.334 0.008 �0.438 0.008

24 0 0.045 0 0 0 �0.006 0 �0.007

25 0 0 0.012 0 0 0.004 0 0

26 57.518 8.823 �9.868 �11.272

^ ^ ^ ^ ^
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Fig. 3. u displacements of high-order elastic modes of cables (a) A and (b) E: solid lines denote (a) 7th and (b) 19th modes; dotted lines

denote (a) 23rd and (b) 26th modes.
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both symmetric and anti-symmetric transversal modes contribute to Kq
rs;K

q, whereas only symmetric
transversal modes, e.g., m ¼ 6 (5) for cable A (E), contribute to Kq

rr;K
q
ss.

Generally speaking, the two cables highlight significant quadratic contributions from non-resonant, besides
resonant, modes. However, while contributions from resonant transversal modes play a significant role for
cable E, those from resonant longitudinal/transversal modes are nearly negligible for cable A. This highlights
how such resonant modes play a role only in the associated cubic coefficients in Eqs. (8)–(10). Indeed, the most
outstanding quadratic contributions of cable A come from non-resonant longitudinal (higher-order) modes
(bold), see, for example, the second longitudinal mode (m ¼ 7) in Kq

rr and the sixth longitudinal mode
(m ¼ 23) in Kq

ss, whose predominant u displacements are both anti-symmetric, as depicted in Fig. 3a. Note that
the non-resonant transverse lower-order (e.g., m ¼ 2, 5) modes also give meaningful contributions to Kq

rs and
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Kq. In turn, cable E reveals significant contributions from longitudinal higher-order modes, too, e.g., with
m ¼ 19 (Kq

rs;K
q) and m ¼ 26 (all coefficients), whose predominant u displacements are symmetric and

anti-symmetric, respectively, as shown in Fig. 3b. Since the values of associated frequency factor terms in
Eqs. (8)–(10) are small, i.e., of the order of O(10�1)–O(10�4), there is no diverging effect possibly due to a
higher-order planar internal resonance [15].

Therefore, overall analyses highlight significant higher-order longitudinal modal contributions for both
primary/secondary crossover cables having high extensibility, with special emphasis on the latter. The
associated effects are likely to increase with cable sag due to the occurrence of consecutive elastic mode
transitions giving rise to coexisting higher-order longitudinal modes. This gives us clear hints about the
insufficient minimal-order model accounting for only resonant modes and the need to use reduced-order
models of highly extensible cables with more degrees of freedom, up to a properly detected (minimum)
frequency order, than those of lower-extensible cables at primary first or second crossover, where lower-order
transversal modes are sufficiently accounted for in the same 1:1 resonant solution [8]. In the following, to
obtain solution convergence, higher-order non-resonant—symmetric as well as anti-symmetric—longitudinal
modes are accounted for.

4. Longitudinal/transversal modal interactions

Retaining the first 25, 32 and 40 modes for cables A, C and E, respectively, the pertinent second-order
coefficients, incorporating quadratic and cubic nonlinearities, are comparatively given in Table 3. Overall, 1:1
resonances are activated as K6¼0 [8], and there are quantitative and/or some qualitative differences observed in
their values and/or sign, which would certainly affect modal interaction features of different sagged cables, see,
e.g., Krr and Kss. Based on the Cartesian form [14] of Eqs. (4)–(7) via the transformations ai ¼ ðp

2
i þ q2

i Þ
1=2,

gi ¼ tan�1 ðqi=piÞ; with i ¼ r or s, the steady-state (fixed-point) solution and associated local stability are
determined using the continuation approach. In the following (Figs. 4 and 5), solid lines indicate stable fixed
points, whereas dashed (dotted) lines indicate unstable fixed points due to a saddle-node SN or pitchfork PF
(Hopf, HF) bifurcation. The latter (HF) plays a significant role in the onset of periodic, quasi-periodic and
chaotic responses, which will be checked through direct numerical integration results with proper initial
conditions. For the sake of comparison, we assign mr ¼ 0.005, ms ¼ 0.006, s ¼ 0 in all cases, and consider
F ¼ 0.005 in frequency-response (FR) diagrams.

FR curves of cable A are shown in Fig. 4a, whereas the associated forcing amplitude-response (FAR) curves
with sf ¼ 0.025 are shown in Fig. 4b. In turn, FR curves of cables C and E are shown in Figs. 5a and b,
respectively. Apart from overall quantitative differences, all nonlinear response diagrams manifest a general
qualitative agreement as regards the coupled-mode (ar 6¼0, as 6¼0) solution originating from the uncoupled-
mode (ar ¼ 0, as6¼0) one via a PF bifurcation, even though the type of the latter may be different, namely
super-critical and/or sub-critical, thus giving rise to a stable and/or unstable coupled-mode solution. Yet, some
meaningful differences are observed:
(i)
Tab

A co

Coe

Krr

Kss

Krs

K

Uncoupled-mode FR curves of cables A (Fig. 4a) and C (Fig. 5a) exhibit a hardening nonlinear behavior,
whereas those of cable E (Fig. 5b) exhibit a softening nonlinear behavior similar to low-extensible
le 3

mparison of effective nonlinear coefficients of different primary/secondary crossover cables

fficients Crossover cable

A C E

�88,008.100 144,462.495 �31,366.931

�90,803.684 �2,037,330.156 9857.837

22,022.335 538,886.724 17,924.739

48,452.827 810,408.833 7283.243
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Fig. 4. (a) FR and (b) FAR curves and bifurcations of 1:1 resonant cable A involving longitudinal/transversal modal interaction.
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suspended cables [8]. This is likely due to the sign difference in the associated coefficient Kss (Table 3)
entering Eqs. (6) and (7).
(ii)
 For cable E, up to seven (two stable and one unstable uncoupled, one stable and three unstable coupled)
FR solutions are possible, with a coupled stable solution persisting over a wide sf range [8]. On the
contrary, for both cables A and C, which exhibit a smaller number of solutions, the single coupled stable
FR solution occurs in only a marginal sf range. Yet, multiple coupled stable solutions are possible in the
relevant FAR curves (e.g., in Fig. 4b of cable A with F ¼ 0.01).
Besides exhibiting typical SN and PF bifurcations, coupled-mode responses of cable A or C highlight one or
two HF bifurcations, respectively, whereas those of cable E reveal none of them. This entails possible
occurrence of periodic, quasi-periodic as well as chaotic oscillations for cables A and C involving longitudinal/
transversal modal interactions. To verify such prediction, numerical transient-free time responses manifesting
amplitude modulation are illustrated as follows.
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Following the HF bifurcation (sfE0.0177) in Fig. 4a, the qr�qs phase projection results with a slow
increment in sf (sf ¼ 0.0180-0.0187) and fixed initial conditions are displayed in Fig. 6. The limit cycle
(Fig. 6a) initially loses stability via a period-doubling bifurcation (Fig. 6b), leading to a progression of multiple
closed-loop trajectories whose amplitudes considerably increase in size (Figs. 6c and d). Eventually, due to the
accumulation of period doublings, the time histories appear aperiodic and the trajectories experience chaos as
shown in Figs. 6e and f. By varying F, another chaotic oscillation is detected near the single HF bifurcation in
the associated FAR curves in Fig. 4b. In turn, the occurrence of quasi-periodic response is exemplified in
Fig. 7, corresponding to the FR curves in Fig. 5a with sfE�0.006 between the two HF bifurcations. Besides
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showing different multi-harmonic features of pr�qr (Fig. 7a) and ps�qs (Fig. 7b) phase planes, a closed-loop
map of ar�as Poincarè section in Fig. 7c confirms a quasi-periodic motion.

Depending on coupled/uncoupled amplitudes, a comparison of space–time evolution of nonlinear
longitudinal/transversal (u/v) displacements and dynamic tension Td [8] over a half-forcing period is
illustrated in Fig. 8. The Td values are normalized with respect to the cable maximum static tension TH

at supports. The responses relevant to three coexisting (ar,as) stable solutions, i.e., (0.010792, 0.010905),
(0, 0.006378) and (0.005915, 0.004266) in Fig. 4b at F ¼ 0.01, are illustrated in Fig. 8a–c, d–f and g–i,
respectively. Overall, due to 1:1 resonant interaction at secondary crossover A (Fig. 1b), the spatial symmetric/
anti-symmetric (anti-symmetric/symmetric) combination of longitudinal (transversal) configurations (Fig. 2),
taking into account also second-order spatial corrections [12], highlights asymmetric features of time-varying
u(v) profiles in Fig. 8a or g (8b or h), whereas the uncoupled configurations preserve the spatially symmetric
character of the directly excited v mode (Fig. 8e) accompanied by anti-symmetric u component (Fig. 8d). The
resonantly coupled u and v configurations have comparable amplitudes, with the former (Fig. 8a or g)
predominating over the latter (Fig. 8b or h) in the nonlinear range. This is clearly different from the associated
uncoupled case (Fig. 8e vs. d) or from other resonant cases with transversal modal interactions in low-
extensible cables at primary crossovers [8], whose v components are the only significant responses. Besides
manifesting the spatially asymmetric character, the internally resonant-induced dynamic tensile or
compressive forces—involving longitudinal/transversal modal interactions—are also substantially large due
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to both u and v contributions (Fig. 8c and i), with respect to the small-amplitude symmetric ones practically
due to the predominant v contribution (Fig. 8f). The former figures highlight the importance of accounting
for the longitudinal inertia ð €uÞ and the corresponding higher-order displacement gradients u02; u03

� �
, some of

which being coupled with the transversal component u02v0
� �

[8].
Finally, it should be noted that the presented results are simply aimed at qualitatively evaluating the

geometrical nonlinear (strain-displacement) effect on the finite-amplitude forced dynamics of highly
(vs. lower) extensible cables. In this respect, the circumstance that some values of the elasto-geometric
parameter l/p possibly correspond to about the lower threshold of the physically admissible elastic range [3],
in view of presently available values of the strength-to-stiffness material ratio, does not deserve special
attention. On the other hand, considering a more realistic nonlinear and/or hysteretic constitutive
(stress–strain) relationship (e.g., Refs. [5,10,16]) would be of major practical significance, and is left for
future investigation.

5. Conclusions

Analysis of second-order geometrically quadratic nonlinear coefficients governing planar 1:1 resonant
interactions of highly extensible suspended cables has highlighted meaningful higher-order longitudinal modal
contributions at both primary/secondary frequency crossovers. By focusing on the secondary crossover cable
involving the first longitudinal (i.e., elastic) mode, relevant longitudinal/transversal modal interactions provide
some insights into the nonlinear dynamics of highly extensible cables, with respect to the primary crossover
cable involving transversal/transversal modal interactions, whose response characteristics appear quite similar
to those of low-extensible crossover cables [8]. In particular, the occurrence of periodic, quasi-periodic as well
as chaotic oscillations involving the resonant longitudinal mode is revealed. Based on the effective quadratic/
cubic nonlinearities, overall analytical–numerical outcomes, involving coupled longitudinal/transversal
amplitudes, manifest space–time, multimodal, asymmetrical distributions of displacement and tension.
These highlight a crucial role played, for even small-sagged suspended cables, by the longitudinal inertia

and the associated higher-order displacement coupling accounted for through the underlying kinematic
non-condensed modeling.
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